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Reconciling the expansion of human activities with
conservation of endangered predators is an increas-

ingly important issue in both marine and terrestrial
ecosystems (Ripple et al. 2014). Documented declines of
large predators have caused major losses of ecosystem
health and services – benefits that nature provides to peo-
ple (Estes et al. 2011; McCauley et al. 2015). Reductions
of lions (Panthera leo) and leopards (Panthera pardus par-
dus) in sectors of sub-Saharan Africa have led to popula-
tion increases of olive baboons (Papio anubis), which in
turn have led to higher rates of intestinal parasite infec-
tions among their populations and humans living in close
proximity (Brashares et al. 2010). Overfishing of large
predatory sharks in the coastal Northwest Atlantic was
linked to the collapse of a century-old fishery for bay scal-
lops (Argopecten irradians) in North Carolina as a result of
an overabundance of cownose rays (Rhinoptera bonasus),
which prey on scallops but were controlled numerically
by the once-abundant predatory sharks (Myers et al.
2007). Yet efforts to protect and recover large predators
may also result in high personal risk for people and
domestic animals sharing the same environments. Recent
analyses have highlighted recoveries of carnivores in
human-dominated European landscapes (Chapron et al.
2014), but the question of how widespread this coexis-
tence model can be remains open. Here we address this
issue for the marine environment.

In coastal areas around the world, the number of unpro-
voked shark attacks on humans has grown at a steady pace
(Burgess 2015). In western Australia, in the past 3 years
there have been seven deaths from shark bites (Gross
2014). Recently, 12 attacks resulting in five fatalities

occurred off Reunion Island in the Indian Ocean (Séret
2014). These events elicit intense media and public atten-
tion, and prompt local governments to take radical
actions, including shark-culling campaigns, to improve
beach safety (Curtis et al. 2012; Neff and Yang 2013).

Culling is predicated on the assumption that increasing
shark attacks are driven by greater shark abundances.
Nevertheless, alternative explanations exist. More people
in the water, easier communication of shark encounters
facilitated by the internet and social networks, and
changes in shark and human distributions and behavior
can increase the number of shark attacks on record
(Curtis et al. 2012). Under these scenarios, culling may be
ineffective in reducing public risk and instead may
remove sharks from populations that are already depleted. 

In light of the poor conservation status of many shark
species globally (Dulvy et al. 2014), culling already
threatened populations might be irreparably detrimental
for their persistence, cause unforeseen ecosystem effects
(Ferretti et al. 2010), and have negligible effects on public
safety (Curtis et al. 2012). In Hawaii, for example, no
change in attack rate was detected following the inten-
tional eradication of 4668 sharks around the Island of
Oahu in response to a surge in shark attacks during the
1960s (Wetherbee et al. 1994).

Analyses of long-term shark attack records and human
ocean use statistics can provide quantitative assessments
of changes in shark bite risk in a region, identify the pos-
sible factors contributing to encounters between sharks
and people, and inform alternative measures to avert or
minimize the occurrence of injurious interactions (Neff
and Yang 2013). Here, we analyzed these data from
coastal California, a well-monitored ocean sector where
most attacks are attributed to white sharks (Carcharodon
carcharias). After decades of unregulated exposure to off-
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shore and coastal fisheries, the Northeast Pacific (NEP)
white shark population is predicted to experience a phase
of growth due to (1) a reduction in fishing mortality; (2)
improved protection at the state, federal, and international
levels; (3) impacts of climate change; and (4) increased
availability of food resources (Dewar et al. 2013). Using
records of shark bites and statistics on human ocean use,
we addressed the hypothesis that risk has increased over
the past six decades and evaluated whether a coexistence
model between large predatory sharks and people is feasible
under expanding human ocean use.

n Methods

Probability framework

The probability of a recorded shark attack can be modeled as
the joint probability of multiple processes: the probability
that a person and a shark encounter one another p(E), that
such an encounter results in a bite p(B), and that the attack
is communicated p(C). p(E) depends on the abundance of
humans (H) and sharks (S) in the water, and on the spatial
overlap between people and sharks (O). If we assume that
for any given encounter p(B) and p(C) remain constant,
then the probability of a recorded shark attack depends only
on H, S, and O. Because shark attacks are rare and discrete
events (Curtis et al. 2012), it is reasonable to assume that the
number of attacks per unit time and location (observation
unit) follow a Poisson distribution that can be a function of
covariates reflecting H, S, and O. By using this probability
framework, we analyzed data on shark attacks recorded in
California and information on local human ocean use (com-
mercial or recreational activities exposing people to shark
encounters [eg surfing, diving, and beach visitation]) to esti-
mate the expected number of attacks at any time and loca-
tion per unit of people predicted to be in the water, and to
predict changes in attack risk over time and space.

Shark attack data

Data on shark attacks were extracted from the Global
Shark Attack File (WebPanel 1; GSAF 2014). We selected
only shark attacks recorded in California between 1950
and 2013 that involved white sharks and resulted in
injuries. Injurious white shark bites often result in the vic-
tim’s hospitalization, and consequently, we expected that
few cases, if any, would have failed to be recorded and com-
municated even in historical times (thus ensuring that p[C]
was constant throughout the study period).

Ocean use data

For the same period, we constructed time series of popula-
tion abundance for California coastal counties adjusted
for seasonal and weekly patterns of coastal beachgoing
(WebPanel 1). We also constructed time series of annual
indices of people engaged in the main ocean activities of

the attack victims: surfing, scuba diving, abalone
(Haliotis spp) diving, and recreational swimming (see
Results section). Surfing was quantified in terms of surf-
ing events per year, scuba diving as annual diving days by
certified scuba divers, and abalone diving as annual div-
ing days recorded in abalone fisheries; swimming inten-
sity was predicted by estimating the annual number of
coastal beach visits (WebPanel 1).

Estimating standardized attack rates

Temporal and spatial covariates associated with each
attack record, and data on ocean use, were used to esti-
mate: (1) the expected number of attacks at any given
time and location per unit of human ocean use (attack
rate); (2) the corresponding individual risk of experienc-
ing a shark attack; and (3) the change in (1) and (2) over
time and space.

Because data on ocean use were available at different
spatial and temporal resolutions, we estimated attack
rates at two different levels of spatial and temporal aggre-
gation. Initially, we estimated a standardized attack rate
for each county, year, month, and victim activity. We fit-
ted a generalized linear model (GLM) with a Poisson dis-
tribution and a log link function (the logarithm of the
distribution mean is a linear function of the model pre-
dictors) to the number of attacks recorded in each obser-
vation unit, and used the county-specific adjusted
monthly index of coastal population abundance as an off-
set term (equivalent of dividing the number of attacks by
the number of people present in coastal areas while
retaining the probabilistic model framework; WebPanel
1). This aggregation level allowed us to detect seasonal,
annual, and spatial patterns of attack rates and to test
whether there were differences in attack rate across vic-
tim categories. We assumed that human ocean use was
proportional to human density in proximity of the coasts
and to the seasonal and weekly propensity of people to
visit the shore for recreation (WebPanel 1). In fact,
within coastal California, recreational ocean use (surfing,
diving, and oceangoing) has increased at a faster rate
than the growth of the state’s human coastal population.
To account for this pattern, we then used the more
detailed indices of ocean use (available only at the state
level). Accordingly, for each victim category, we aggre-
gated the attack data at the state level, fitted a Poisson
GLM to the annual number of attacks recorded in
California, and used the victim-specific index of activity
intensity as an offset term (WebPanel 1).

Finally, to estimate an overall change in risk of shark
attack, we stacked all activity-specific time series
together and estimated an average instantaneous rate of
change of standardized attack rate by fitting a Poisson
generalized linear mixed-effects model (GLMM) to the
annual number of attacks by victim category, using the
activity-specific index of ocean use as an offset term, and
treating victim activity as a random effect (WebPanel 1).
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n Results

Between 1950 and 2013 there were 86 injurious attacks –
13 of which were fatal – attributed to white sharks along
the California coast (Figure 1a). Throughout this period,
there was an average of 1.37 attacks per year with an
increasing trend, from an average of 0.9 attacks per year
in the 1950s to about 1.5 attacks per year in the final 10
years (from 2004 to 2013; Figure 1b). Attacks clustered
close to areas of high human population density, such as
southern California between San Diego and Orange
counties and in proximity to San Francisco Bay, as well as
in sparsely populated areas to the north between Del
Norte and Mendocino counties (Figure 1a). Incidents
were recorded progressively closer to northern elephant
seal (Mirounga angustirostris) colonies (Figure 2a), reflect-
ing the sharks’ coastal aggregation in proximity to their
primary prey (Brown et al. 2010; Dewar et al. 2013).

During the same period, human ocean use for commer-
cial and recreational purposes increased with increasing
human population and easier access to the coastal ocean
(WebPanel 2). Human population in coastal California

tripled, from 7 million inhabitants in the 1950s to 21 mil-
lion in 2013 (Figure 1c). Ocean activities increased at
much faster rates. There were about 7000 surfers in 1950,
and more than 872 000 in 2013 (a 125-fold increase).
Likewise, the estimated number of certified scuba divers
was about 2000 at the beginning of the 1960s and about
408 000 in 2013 (a 204-fold increase), while beachgoers
increased from approximately 53 million in the 1950s to
about 165 million in 2013 (Figure 3a; WebPanel 2).

After weighting shark attack numbers by the coastal
human population, we detected a decline in attack rate by
2.4% annually, amounting to a 78% reduction between
1950 and 2013 (WebTable 1). Attack rate varied through-
out the year, being highest between October and
November, and lowest between March and May (Figure
1d); this pattern matches the seasonal occurrence of sharks
in California waters detected with satellite and radio-trans-
mitting tags (Jorgensen et al. 2010), and from records of
shark attacks on seals, sea otters (Enhydra lutris), and
cetaceans (Klimley and Ainley 1996). However, seasonality
changed over time (Figure 1d). In the 1960s, attacks had a
less obvious seasonal trend, peaking at the end of

Figure 1. Geographic and temporal patterns of shark attacks. (a) Map of shark attacks and human population density in California
coastal counties; attack positions (circles) have been slightly offset to facilitate identification of single attacks in nearby locations. (b)
Time series of annual number of attacks (a regression line has been superimposed on the points). (c) Growth curve of California
coastal population. (d) Seasonal variation of standardized attack rate; dots indicate peaks of the attack rate across decades; note a shift
from early winter to mid-fall. (e) Changes in attack rates across counties; counties have been ordered from north (left) to south
(right). Error bars indicate 95% confidence intervals.



Predator conservation and public safety F Ferretti et al.

www.frontiersinecology.org © The Ecological Society of America

November. In subsequent years, this seasonal variation
became increasingly more pronounced, and the peak
moved progressively toward the beginning of October.
Finally, attack rate increased from southern to northern
California and was above detectable levels only in areas
where large adult sharks are known to congregate (Dewar et
al. 2013). Peak attack rates were detected around San Luis
Obispo and Mendocino counties (Figure 1e).

Surfers were attacked most frequently (33%), followed by
abalone divers, scuba divers, and swimmers (27%, 14%, and
14% respectively; Figure 2b). Modeling attack rates while
controlling for the numbers of people engaged in each of
these activities highlighted that abalone diving was the
activity most prone to shark incidents, followed by surfing,
scuba diving, and swimming. In 2013, the chances of a
shark attack on an abalone diver were one in 1.44 million
or close to 0.69 attacks for every million diving days. For
scuba divers, they were 0.007 per million (or one attack for
every 136 million diving days). For surfers, the chances
were one in 17 million. Swimmers had the lowest chance of
shark attack, with one attack for every 738 million beach
visits (0.0014 attacks per million beach visits; Figure 3).

Individual, activity-specific attacks showed significant
declines for scuba and abalone divers and for swimmers,
but not for surfers (Figure 3c). Standardized attack rate
for scuba divers declined by more than 99.67% (confi-
dence interval [CI]: 99.98–93.56) between 1962 and
2013. For abalone divers, attack rates declined by about
97.46% (CI: 99.58–84.68) between 1959 and 2013. For

swimmers, attack rates declined by about 81.49% (CI:
95.69–20.48) between 1950 and 2013. Overall, when all
individual estimates of temporal change in attack rate
were combined, there was a significant decline in attack
rate of about 91.24% (CI: 96.42–78.55) over the entire
period (1950–2013) (Figure 3; WebTable 3).

n Discussion

Analysis of shark attack trends off California supports a
coexistence model of ocean users and large sharks.
Similar to analyses conducted on land (Chapron et al.
2014), policies aimed at protecting large marine predators
and predicted to promote recovery of the NEP white
shark population (Dewar et al. 2013) are not associated
with increasing risk to people. On the contrary,
California oceangoers are safer today than at any other
time since the 1950s due to a significant decline in the
risk of injurious shark encounters. Such a pattern might
be evident in other regions with records of increasing
attacks, once the intensification of human ocean use is
taken into account (Curtis et al. 2012; Burgess 2015). 

If attack rate is taken as a proxy of white shark abun-
dance, these results raise the question of whether white
sharks have in fact declined in California, and warrant
further investigations on the status and current trajectory
of the NEP population. In particular, data are needed on
the total amount of fishing-related mortality that white
sharks are exposed to in international waters and

Figure 2. (a) Temporal changes in the distance of attack from the closest elephant seal colony. The trend line represents a significant
exponential model between distance from the closest colony and year (log(Distance) = 41.5 − 0.019 * Year; R2 = 0.078). The blue
region represents the 95% confidence intervals around this model. (b) Number of attacks sorted by victim activity.
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Mexican waters, as current estimates are incomplete and
highly uncertain (Dewar et al. 2013).

The decline in attack rate off California could also result
from a change in the sharks’ spatial distribution in response
to parallel recovery of other large marine animals. White
sharks respond to changing prey population abundance
(Klimley and Ainley 1996; Brown et al. 2010; Skomal et al.
2012). Recovering pinniped populations in California
(WebPanel 2) might have influenced movement and spa-
tial distribution of white sharks in coastal areas, concen-
trating these predators near pinniped rookeries and away
from areas frequented by ocean users. Elephant seals, in
particular, influence the predatory behavior of local white
sharks (Pyle et al. 1996; Brown et al. 2010). After being
completely eradicated from California in the 19th century
by overhunting, elephant seal colonies were gradually re-
established in the past six decades due to a northward
range expansion from Isla Guadalupe, Mexico (WebPanel
2). Sharks returning from their offshore phase (WebPanel
1) might now spend less time roaming in inshore areas in
search of food and instead go directly toward pinniped
colonies, thereby reducing the probability of encountering
people. The detected decline in distance between shark
attacks and elephant seal colonies (Figure 2a), and the
change in attack seasonality with peaks moving toward the
haul-out season of juvenile elephant seals (Le Boeuf and

© The Ecological Society of America www.frontiersinecology.org

Laws 1994), are consistent with the hypothesis that white
sharks have been tracking their major prey’s population
dynamics (WebPanel 2).

Finally, behavioral changes of sharks and humans might
also explain a decline in interactions. Sharks may avoid
highly populated areas or, because of the increased availabil-
ity of preferred prey such as pinnipeds, may be less inclined
to explore alternative food resources. This potential mecha-
nism is particularly important because it would indicate that
effective conservation of endangered marine populations
may also result in greater public safety. People may have also
learned where and when sharks are present and thus adapted
their behavior when engaging in ocean activities. For exam-
ple, some aspects of surfing (preference for timing activities
at dawn or dusk, and selecting particular locations where
conditions are ideal) are difficult to change and might partly
explain why the decline in attack rate on this victim cate-
gory was not significant (see WebPanel 2 for other caveats
associated with surfers). These hypotheses remain untested.

Although the reasons for the declining attack rates need
to be evaluated with additional data, we demonstrated that
the probability of shark bites is extremely low. Comparing
our data with statistics of the Centers for Disease Control
and Prevention (www.cdc.gov), we calculated that, in
California, a person is 1817 times more likely to die by
unintentional drowning than from a shark attack and is

Figure 3. Change in attack rate by victim activity. (a) Trajectories of people’s engagement in ocean activities (ie offset variables) used
to standardize the activity-specific attack rates (b). Red regions in (b) represent 95% confidence intervals (CIs) around the trend line.
Gray regions highlight the discrete nature of the attack data (ie there were only one, two, or three attacks per year per victim
category). Values 187 and 291 near the top of the highest and lowest charts indicate points beyond the y-axis limits. (c) Instantaneous
rates of change (IRS) of attacks. Dots and superimposed segments are the independently estimated activity-specific IRS and 95% CI;
the triangle is the IRS of the attacks combined together.
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6897 times more likely to be hospitalized for decompression
sickness when diving (Dardeau et al. 2012) than being a
victim of a shark bite. Nonetheless, shark attacks do occur,
and thus the concern and need for policy makers and nat-
ural resource managers to address the risk is justified. We
suggest that an in-depth analysis of available attack data
can inform alternative strategies that are more efficient
than culling, and that will improve beach safety while pro-
tecting threatened shark populations. For instance, our
results show that in California it is 1566 times safer to surf
in March between San Diego and Los Angeles as compared
with surfing between October and November in
Mendocino. In Mendocino County, risk decreases by about
24 times if surfing in March. These are order-of-magnitude
decreases in shark bite risk that have never been demon-
strated with culling (Curtis et al. 2012), and can be used to
promote safer behaviors for ocean users (eg avoiding riskier
locations and seasons). Attack statistics for shark species
(white sharks and others) and auxiliary data on ocean use
from other regions could be analyzed in depth, as we have
done here for California. These analyses may reveal spatial
and temporal patterns of attack rate, determine whether
bite risk has actually increased or decreased, investigate pos-
sible causes, and inform management strategies to address
public safety and risk perception by the public (eg through
ocean user associations such as scuba diving or surfers’ orga-
nizations, and natural resource management agencies, such
as those responsible for managing wilderness parks). This
approach could be applied to other carnivores, both in
marine and terrestrial environments, to inform policies and
behaviors aimed at supporting the coexistence of people
and potentially dangerous predators.

Large predators, including sharks, are important ecosys-
tem components and public safety is a priority, but meet-
ing the seemingly conflicting goals of protecting people
and large predators is possible. Any initiative aimed at
reducing populations of sharks and other top predators
should be based on careful consideration of their abun-
dance, conservation status, the potential ecosystem
effects of these actions, and, importantly, the costs, bene-
fits, and rationales of alternative actions. An improved
understanding of the behavior, distribution, and ecologi-
cal role of sharks, as well as the factors influencing the
risk of shark bites, may ultimately be the most effective
way for humans to stay safe while enjoying nature.
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WebPanel 1. Methods 

General modeling framework 

For both the analysis at the county level and the state level, we assumed that the number of attacks 

(xi) falling in each observation unit i followed a Poisson distribution with mean µ, 

 

        𝑃 (𝑥𝑖|µ)  = µ𝑥𝑖 e
−µ

/xi!       for       xi = 0, 1, 2,..., n.  (1) 

 

Thus, to estimate a predicted change in number of attacks in the observation domain (the study 

area) over time and space, we employed this generalized linear modeling structure:  

 

log(µ) = Xβ + log(H)    (2) 

 

where X is a matrix of covariates and β a vector of parameter to be estimated from the data, while 

log(H) is the logarithm of the index of ocean use (eg number of people in the water, number of 

surfers, number of divers, etc). This index, included as an offset parameter, allows the prediction of 

a standardized change in attack rate (eg number of attacks per unit of ocean use [ie people in the 

water]), while retaining the probabilistic nature of the discrete response variable. 

 

Attack data 

The Global Shark Attack File (GSAF; www.sharkattackfile.net/spreadsheets/GSAF5.xls) is an 

open-access global database of human–shark interactions curated by the Shark Research Institute 

(www.sharks.org). The database contains information on location, date, and time of the attacks; 

details about the victims: name, age, sex, activity, and description of the injury; species of shark 

involved and an estimate of its size; and details on the attack file: case number, investigator, source 

references (eg scientific or newspaper articles documenting the incident), and a link to the complete 

report of the attack file. 

 

Data validation 

We validated each record by cross-checking source references, and making additional searches to 

make sure all injurious white shark (Carcharodon carcharias)–human interactions in California 

were documented. We also cross-checked the GSAF with the International Shark Attack File 



(ISAF), an authoritative database of shark attacks curated by the American Elasmobranch Society 

and the Florida Museum of Natural History (Burgess 2015). Although the ISAF data are not freely 

available at the single-incident level, ISAF summary statistics are available online 

(www.flmnh.ufl.edu/fish/sharks/isaf/graphs.htm). 

For two attacks we had imprecise dates: “Prior to June 19 1959” in case GSAF ND.0060, 

and “August 95” in case GSAF 1995.08.00. These dates were transformed to 19 June 1959 and 1 

August 1995. 

 

Geolocation of attacks 

Coordinates of the attacks were usually available from the case pdf files downloaded 

http://sharkattackfile.net/spreadsheets/pdf_directory. When coordinates were not available, we 

geocoded the attacks using the Google Maps Geocoding API, and searching for locations reported 

as text strings (eg “Point Lobos, Monterey, California”). 

 

Victim activities 

The GSAF data on white shark attacks in California reported about 46 textual variations of victim 

activities. For exploring differences in attack rate across victim activities, we binned them into 8 

categories – swimming (SW), surfing (SU), scuba diving (SD), kayaking (KY), body boarding 

(BB), spearfishing (SF), abalone (Haliotis spp) diving (AD), and hookah diving (HD) – and 

explored their frequency of occurrence (Figure 2). 

Eventually, for the attack rate standardizations, we consolidated these classes into four 

categories representing the most frequent activities of shark attack victims: surfing, scuba diving, 

abalone diving, and swimming (Figure 2). Spearfishing and hookah diving were included in the 

“abalone diving” category. We reasoned they had a similar exposure to shark attacks. All involve 

spending a substantial amount of underwater time per activity episode, occupied in a fishing 

activity that potentially attracts sharks, while being less alert to the surroundings. Body boarding, 

kayaking, and kayak fishing were included in the “swimming” category. All of them represent 

ocean activities expected to be proportional to the level of beachgoing in an area. 

 

Human ocean-use data 

Human ocean-use is expected to be related to human density in proximity to the coasts, and the 

propensity of people in using the ocean for recreation (surfing, diving, etc) or work (fishing). 

 

California coastal population 

Time series of human population by counties were obtained from the California Department of 

Finance (www.dof.ca.gov), which publishes census data at intervals of decades. Data for years 



between censuses were interpolated by fitting a locally weighted polynomial regression (LOWESS) 

to the time series, and using the LOWESS’ parameter estimates to predict the populations of 

missing years. 

Census data used to produce population densities in Figure 1 and WebFigure 2 were 

obtained through the R packages USCensus2010 and USCensus2010County.  

 

Statistics of ocean activities 

Surfing 

We compiled a time series of surfer estimates from different published and online sources 

(WebTable 4; WebPanel 2). Using the published estimates of number of surfers in California, we 

fit a generalized additive mixed-effects model to the time series. To avoid numerical instability, we 

transformed the data into thousands of surfers and rounded the numbers to the nearest integer. We 

assumed that the expected number of surfers per year followed a Poisson distribution: 

 

S ~ Poisson(µ)     (3) 

 

log(µi) = a + s(y) + aj       aj ∼ N (0, σ𝑎
2)   (4) 

 

where S is the number of surfers in thousands, a is an intercept, s(y) is a penalized tin plate 

regression spline of year, and aj is the random contribution given by data source j. Since surfer 

estimates were taken from different sources, we assumed that these sources were overestimating or 

underestimating the number of surfers consistently by a random quantity aj ∼ N (0, σ𝑎
2). Such a 

random structure accounted for the correlation of residuals within data source. Model fitting was 

performed through the use of R version 3.1.2 with the gamm( ) function in the mgcv package. 

We then used the parameter estimates of the model to predict a complete continuous time 

series over the whole period. Finally, to find the number of surfing events per year, we multiplied 

this value by 20.32, which is the average annual number of surfing days California surfers spent in 

2001 (WebPanel 2; Leeworthy and Wiley 2001). 

 

Swimming 

For general swimming and other oceangoing activities, we used an estimate of beachgoing. There is 

a direct relationship between beachgoing and the actual number of people entering the water 

(WebFigure 1). To estimate beachgoing, we summed the county-specific time series of human 

population over all the coastal counties to find a cumulative time series of people living in coastal 

California. Then we used available estimates of beach days spent by Californians in 2001 



(Leeworthy and Wiley 2001; Pendleton et al. 2006) and took the ratio between the mean of this 

estimate (152 million beach days) and the population estimate in the corresponding year. We then 

multiplied this ratio by the coastal population estimates of all the other years having no information 

on beachgoing. 

 

Scuba diving 

For scuba diving we estimated a time series of annual diving days generated by scuba divers in 

California. First we collated estimates of the US scuba diving population extracted from different 

published sources (WebTable 5). We then fit a two-parameter sigmoid mixed-effect model to these 

data to predict a complete time series of diving populations, 

 

𝑑𝑖𝑗 =
(α+𝑎𝑖)∗ 𝑦𝑗

2

((β+𝑏𝑖)2+𝑦𝑗
2)

+ ϵ𝑖𝑗,   (5) 

 

where y is year, α and β are the mean values of two equation parameters, and ai and bi are the 

random-effect deviations from the population-level parameter estimates, given by the different 

sources of data. These parameters were assumed to follow a normal distribution with mean 0 and 

variance–covariance matrix Ψ; the residuals ϵ𝑖𝑗 were normally distributed with mean 0 and 

variance σ2, or ϵ𝑖𝑗 ∼ N (0, σ2). In this way we accounted for the correlation between observations 

coming from the same data source. 

The US diving population estimates were converted to California estimates by multiplying 

these values by the proportion between recreational divers in California (371 000) estimated in 

2001 (Leeworthy and Wiley 2001) and the same year’s estimate for the entire US. Finally, we 

multiplied the number of divers in California by the average number of per-diver diving days 

(1.383) estimated for this category in 2001 (Leeworthy and Wiley 2001) to obtain an estimated 

number of dives per year (Figure 3a). 

 

Abalone diving  

Intensity of abalone diving was expressed in terms of diving days per year. These estimates were 

produced by the California Department of Fish and Wildlife by using telephone survey data, 

number of abalone fishing permits, aerial and creel survey data, and interview surveys (J 

Kashiwada unpublished data; WebTable 6). 

Estimates of diving days were obtained by multiplying abalone permits by the percentage 

of divers obtained from telephone surveys, and then by the average number of diving days per 

diver. Telephone survey data from 2002–2009 were used to estimate the proportion of divers 

fishing for abalone from a cumulative figure of sales that do not distinguish between divers and 

rock pickers (rock pickers are also called shore pickers because they take abalones without diving). 



These surveys were also used to estimate the number of diver days for the years not having 

telephone survey data (1998–2001 and 2010–2012). In these years, percentage of divers, and dive-

days per diver, were set as the average of the values from 2002–2009. Data mainly pertained to 

northern California, from Pismo Beach to the Oregon border. We assumed that they were adequate 

to represent the intensity of abalone diving necessary to standardize the attacks on this victim 

category we had on record. 

The resulting time series of diving days followed a parabolic trajectory (see WebPanel 2 

for explanations) and thus it was modeled with a quadratic linear model: 

 

   𝐷𝐷𝑖𝑗 = α + β𝑌𝑖𝑗 + β2 𝑌𝑖𝑗
2 + ε𝑖𝑗   (6) 

 

where α, β, and β2 are parameters to be estimated by generalized least squares (GLS), 𝐷𝐷𝑖𝑗 are 

diving days per year i and recording method j, Y is the year, and ε𝑖𝑗 are residuals. Here 

ε𝑖𝑗 ∼ N (0, σ𝑗
2), allowing them to have a different variance structure for each level of the recording 

method j. We used this variance structure because estimates of diving days varied in accuracy, 

usually dependent on the methods used for collecting data. Data from random telephone surveys to 

households had very low sample sizes and were highly variable due to variable contact success for 

the telephone surveys (J Kashiwada pers comm). The most accurate data were those for the years 

since 1998, when abalone permits began to be sold. Finally, to avoid autocorrelation of residuals 

coming from similar survey methods, we included a correlation structure. We chose an 

autoregressive model of order 1 (AR1, selected over a compound symmetry correlation structure 

due to a lower-model Akaike information criterion [AIC] value; Zuur et al. 2009). 

 

Attack standardization 

County-level analysis 

We counted the number of attacks falling in every combination of county (C), month (M), year (Y), 

and victim activity (A) characterizing the spatial and temporal domain of our system. We 

considered all California coastal counties excluding those having marine access only in the San 

Francisco Bay (ie Alameda, Contra Costa, Napa, Santa Clara, and Solano; no attacks were recorded 

in these counties). Counts for combinations with no attacks were set to zero. We fitted a 

generalized linear model with Poisson distribution and log link to the count data and used county, 

year, month, and activity as explanatory variables. Month was expressed as an ordinal variable 

going from 1 (January) to 12 (December), and included in the model as part of a two-term 

sinusoidal function (𝑓(𝑀) = β𝑠1 𝑆1 + β𝑠2 𝑆2 = β𝑠1  ∙  sin(2π𝑀

12
) +  β𝑠2  ∙  cos(2π𝑀

12
)). This function 

allowed us to capture a seasonal effect on the attacks (Ferretti et al. 2013). 



The general model structure is given in Equation 2. In this case, µ is the expected number 

of attack per combination of year, month, county, and activity. H is the index of human ocean use 

of each statistical unit (combination of county, year, and month). 

 

Index of ocean use H 

We assumed that ocean use was proportional to coastal population abundance. To make coastal 

population abundances as close as possible to indices of ocean use, we took into account seasonal 

patterns of beach visitation observed in California (Dwight et al. 2007). We rescaled the county-

specific population abundances by a monthly coefficient representing an index of beach visitation 

going from 0 to 1, where 1 is the month with the peak in beach visitation, and all the other months 

are proportional to this maximum value. Hence we generated a county-specific monthly index of 

coastal population abundance Hy,m,c. 

 

Model selection 

From an initial list of covariates deemed to explain the variability of the attacks (C, Y, S1, S2, and 

A), we fitted a model including main effects and two-way interactions between year, county, and 

the sinusoidal terms S1 and S2. We wanted to test temporal changes in geographic and seasonal 

occurrence of attacks. Then we proceeded with model selection by initially using a multi-model 

inferential approach (Burnham and Anderson 2002). We fitted all combinations of the selected 

variables by taking into account marginality (ie fitting models containing interactions only if their 

main effects were included; Calcagno and de Mazancourt 2010). Multimodel selection was 

performed with the R package glmulti (Calcagno and de Mazancourt 2010). After obtaining a first 

set of plausible models according to their corrected AIC (AICc) and Akaike weights (Burnham and 

Anderson 2002), we selected the model in WebTable 1 as our best model because of its minimal 

AIC and the statistical significance of the individual variables. For example, even though covariate 

S2 was not statistically significant (P > 0.05), we retained it to complete the sinusoidal function of 

month. Finally we tested for autocorrelation of residuals over time by fitting a generalized 

estimating equation (GEE) with the same linear predictor and an AR1 correlation structure on 

residual clusters identified by counties and activities, and we found no significant deviation from 

independence. 

 

Complex trajectories of change 

It is currently hypothesized that the northeast Pacific (NEP) white shark population is in a recent 

increasing phase (Dewar et al. 2013). Hence, we tested whether there were more complex temporal 

trajectories of attack rate. We refitted a model structure equivalent to the best one selected in the 

previous stage by using a generalized additive model (GAM) where month was included as a cyclic 

cubic regression spline interacting with year. Results suggested that attack rate had a constant 

decline throughout the period. 

 



State-level analysis 

For each main group of victims (surfers, abalone divers, scuba divers, and beachgoers), we 

modeled the annual number of attacks recorded along the whole coast of California as a function of 

year and the pertinent annual index of activity intensity: 

 

    log(µ) = α + βyY + log(Ha)   (7) 

 

where Ha = f (Y ) is an annual index of engagement for activity a (ie surfing, abalone diving, scuba 

diving, and beachgoing, estimated as detailed above), α is the intercept, and βy is the instantaneous 

rate of change of attack rate. We controlled for temporal autocorrelation of residuals by fitting a 

GEE with the same linear predictor and an AR1 correlation structure. We detected no significant 

correlation. 

 

Combining activity-specific time series 

We combined all activity-specific time series together and estimated an average instantaneous rate 

of change of standardized attacks in a unique generalized linear mixed-effects model (GLMM), 

where the offset variable changed by victim category (A): 

 

   log(µ𝑎) = α + β𝑦𝑌 + log(𝐻𝑎) + γ𝑎𝐴 + ϵ  (8) 

 

where γ𝑎 ∼ N (0, θ) and ϵ ∼ N (0, σ2). βya is the instantaneous rate of change of the annual 

expected number of attacks for activity a. The offset Ha is the activity index normalized by 

rescaling each value Hai to max(Ha). 

 

Activity effort uncertainty 

Concerned with the effect of the offset estimate uncertainty on the activity-specific changes in 

attack rate (βy), we generated a distribution of 10 000 time series of Ha from the parameter 

estimates and standard errors of the offset models (Equations 3–6). These series were then plugged 

into the attack model (Equation 8) to obtain 10 000 estimates of βy from which we estimated the 

mean and 2.5% and 97.5% quantiles (for confidence intervals [CIs]). 

From this sensitivity analysis, the resulting year effect estimate was –0.038 (CI: –0.041, –

0.034), which is essentially identical to the year effect obtained in model of Equation 8, but with a 

narrower CI (about 25% smaller). This means that the offset uncertainty accounts for a minimal 

portion of the year effect estimate’s uncertainty. 



WebPanel 2. Additional information 

White sharks in California 

White sharks in California are part of the NEP population, a discrete demographic unit that extends 

from Mexico to the Bering Sea and seasonally offshore as far as the Hawaiian Archipelago. The 

core of this population is in the California Current, where white sharks show distinct adult 

aggregation sites: one wintering at Guadalupe Island and another off the coast of Central California 

(Jorgensen et al. 2010). 

In California, white sharks have a well-defined, seasonal pattern of distribution and 

population structure. Juveniles are mainly distributed in southern California and northern Mexico 

year-round, feeding primarily on fish and invertebrates. Sub-adults and adults are mainly 

distributed north of Point Conception, aggregated around pinniped rookeries (Klimley 1985; Lowe 

et al. 2012). Sharks greater than 2.4 m in length remain in coastal aggregation sites from mid-

summer to early winter. Then, a fraction thereof move offshore to discrete open-ocean aggregation 

sites between California and Hawaii (Domeier and Nasby-Lucas 2008; Jorgensen et al. 2010). 

While males return from offshore migrations every year, females tend to return to coastal 

aggregation areas less frequently, possibly due to gestation and parturition (Nasby-Lucas and 

Domeier 2012). 

 

White shark population status 

There is great uncertainty about the status of the NEP white shark population. Combined estimates 

based on photographic mark–recapture analyses and demographic models suggest that the NEP 

population might number between 500 to 5000 individuals (Chapple et al. 2011; Sosa-Nishizaki et 

al. 2012; Dewar et al. 2013; Burgess et al. 2014). Historical benchmarks are absent. In the past 

century, white sharks have been exposed to multiple sources of anthropogenic mortality, from 

offshore drift gillnet fisheries for flying squid, salmon tuna, and billfishes, to coastal inshore 

fisheries of California and Baja California (Lowe et al. 2012). However, the effect of these fisheries 

on the white shark population has been difficult to demonstrate. It is known that inshore set-net 

fisheries produced important levels of fishing mortality on juvenile white sharks (Klimley 1985; 

Lowe et al. 2012), but bycatch data from offshore long-line and driftnet fisheries are often 

scattered, incomplete, or taxonomically uncertain. As a result, the total level of fishing mortality 

that NEP white sharks have been exposed to over recent decades is unknown. 

In the past 20 years, however, there has been an increasing protection of white sharks at the 

state (California), federal, and global level. After 1990, fishing mortality of juveniles due to coastal 

fisheries was reduced in California by the closure of the gillnet fisheries operating within three 

miles of the coast and one mile from islands (Lowe et al. 2012). In 1992, large-scale offshore 

driftnet fisheries were banned by an international resolution, and since 1994, California prohibited 

fishing for all white sharks (Dewar et al. 2013). White sharks were listed in 2002 in the appendices 

of the Convention on Migratory Species (CMS), and in Appendix II of the Convention on 

International Trade in Endangered Species of Wild Fauna and Flora (CITES) in 2013. 



Finally, during the past century, there has been a substantial increase in pinniped 

populations along the California shore, especially after the passage of the Marine Mammal 

Protection Act in 1972 (Le Boeuf and Laws 1994). These animals are white sharks’ most important 

prey and so it is expected that they have influenced the abundance and spatial distribution of 

sharks. 

 

Northern elephant seal recovery in California 

Northern elephant seals (NES; Mirounga angustirostris) were considered extinct by the late 1870s. 

However, in 1880, a small herd was discovered on the Baja California mainland, south of Isla 

Cedros, at Bahia San Cristobal. From the late 1890s through the 1920s, NES bred only at Isla de 

Guadalupe. In 1890, the total population numbered fewer than 100 animals (possibly as few as 20 

individuals). During the 1900s, seasonal immigrants began to be detected along the North 

American west coast, from San Diego to Alaska, and the NES population started to recover (Le 

Boeuf and Laws 1994). It was estimated that in 1957, the total population numbered approximately 

13 000 individuals, and approximately 15 000 individuals in 1960. About 91% of the population 

resided at Isla de Guadalupe, 8% at Isla San Benito, and 1% on the Channel Islands (WebFigure 2). 

From 1965 to 1991, the total elephant seal population increased by 6.3% annually (Le Boeuf and 

Laws 1994). By 1991, there were 127 000 elephant seals (Stewart et al. 1994), and by 2010 there 

were between 210 000 and 237 000 individuals (Lowry et al. 2014). The rapid increase in births at 

San Miguel Island (Channel Islands), the largest colony in the species’ range, accounted for most of 

the population growth in California. Today, California has at least eight colonies (WebFigure 2). 

 

Surfing history 

Surfing was brought to California in 1907 and grew slowly in the years before World War II 

(WWII). In the late 1920s, there were about 30 regular surfers in southern California and about 80 

by 1934 (Crawford 1999). Small surfing communities developed in southern California and Santa 

Cruz (Nelsen et al. 2007). The rapid increase of surfing culture started after WWII with the 

introduction of new material for making boards (Crawford 1999). Eventually, the number of surfers 

grew from about 5000 in 1956 to 100 000 in 1962 (Strathern 2006). The invention of the wetsuit 

was a notable improvement that allowed surfers to play in the cold season and to expand in 

northern California. This spatial expansion of surfing could not be captured in the activity-specific 

attack model, and might have contributed to the lack of statistical significance of the year effect. A 

northward expansion of surfing exposed an increasing number of surfers to areas where adult white 

sharks occur and therefore increased their risk of injurious interactions. Sources of data are in 

disagreement about the temporal trend in surfing popularity. Warshaw (2011) reported that between 

1954 and 1958 there were just over 5000 surfers in California, and between 1959 and 1967, the 

number grew by 25% per year (totaling about 30 000 surfers in 1967). Surges of surf popularity 

also occurred in response to episodic events like the release of the book and movie “Gidget” in 

1957 and 1959, respectively, and the success of the band The Beach Boys (Strathern 2006). No 

quantitative information was available between the end of the 1960s and 2000. Then a national 

survey on recreation activities and the environment (Leeworthy and Wiley 2001, NSRE) provided 

the first scientifically produced estimate of surfers in California. It indicated that at least 742 000 



Californians surfed at least once in 2000 in the US. Assuming that these people spent most of their 

surf time in California, we used this figure as a good estimate of numbers of people surfing in 

California for that year. Eventually, by using socioeconomic demographic parameters such as age, 

class, gender, income, and race, Leeworthy et al. (2005) estimated a national figure for 2005 and 

2010. From these national estimates, we estimated the Californian portions by multiplying the ratio 

of Californian to American surfers recorded in 2000 by the national 2005 and 2010 projections. 

More recently, private investigations (mainly for market assessment purposes) used 

socioeconomic parameters similar to those used by Leeworthy and Wiley (2001, NSRE) to project 

a trajectory of the surfing population between 2007 and 2011. This trajectory suggests a 

decelerating increase in numbers of surfers in the US and a final decline between 2010 and 2011. 

They calculated that in 2011 the number of surfers in the Pacific states (California, Oregon, and 

Washington) was 747 000 (Anonymous 2012). Using the proportions of surfers between California, 

Oregon, and Washington reported in Leeworthy and Wiley (2001), we estimated that there were 

732 000 surfers in California that year. The average number of surfing days California surfers spent 

in 2001 is 20.32 (Leeworthy and Wiley 2001). This may be an underestimate of the average annual 

surfing days per Californian surfer because it is an average of the surfing days US surfers spent 

surfing in California, and not just locals. 

Results from online surveys show that surfers in California (Wagner et al. 2011) and 

Trestles’ Beach (the border between Orange and San Diego counties; Nelsen et al. 2007) record on 

average 120 and 109 visits per year, respectively. Yet, these values may inflate the actual number 

of surf days per surfer in California because respondents of these surveys were likely more avid 

surfers (Nelsen et al. 2007; Wagner et al. 2011). We decided to use the most conservative factor. 

 

Patterns of beachgoing in California 

In southern California, between 2000 and 2004 there were about 129 million beach visits annually 

(60% of all beach visits in the US; Dwight et al. 2012). About 88% of summer visitors are 

California residents (Dwight et al. 2007). Each year, it is estimated that 56 million bathing events 

occur in the waters of southern California (Dwight et al. 2007). Beach visitation has a well-defined 

weekly and seasonal pattern. It is greatest on the weekends and in summer (WebFigure 3). It is 

expected that this pattern could influence the seasonal variation of shark attacks detected from the 

models. 

For the whole of California it has been estimated that there are between 151 and 153 

million beach visits per year (estimates are for 2000 and 2001; Leeworthy and Wiley 2001; 

Pendleton et al. 2006). An estimated 80% of these occur in Orange, Los Angeles, and San Diego 

counties (Pendleton et al. 2006). 

In relative terms, the estimated trend in beach visitation (Figure 3a) tracks the trend in 

coastal population abundance, and likely is an underestimate of the actual increase in beachgoing 

(Hall 2001; Cordell 2008). 

 

 



Patterns of abalone diving effort 

The increase in diving effort occurring between the 1960s and the end of the 1980s (Figure 3a) has 

been explained by increased access to federal, state, and county parks (Miller et al. 1974). Greater 

use of party boats and skiffs, new advances in diving equipment, and larger and more stable 

paddleboards facilitated access to rugged cliff areas several miles to either side of access points. 

Eventually there was a decrease in abalone fishing intensity due to increased fishing regulations 

and fisheries closures: the black abalone fishery was closed in 1993; the pink and white abalone 

fisheries were closed in 1996; fishing for all species has been prohibited from San Francisco to the 

Mexican border since 1997; an annual limit of 100 abalones per person was instituted in 2000; and 

in 2002, this limit was reduced to 24 abalones per person. Currently, commercial abalone fishing is 

allowed from Point Lobos to the Oregon border. 

 

Change in distance between attacks and NES colonies 

We extracted NES colony positions from Lowry et al. (2014). Then we calculated the distance 

between the shark attack positions and their closest NES colony, also taking into account the 

colony’s establishment year. For example, if a shark attack was close to Piedras Blancas (San Luis 

Obispo), and it occurred before 1992 (when the colony of Piedras Blancas was established), we 

calculated the distance between the attack and the closest existing colony at that time (ie San 

Miguel Island). Then we fit a linear regression between the logarithm of distances and attack years 

(Figure 2). 



WebTable 1. Best model standardizing the attacks at the county level 

 
 

Covariate Estimate Standard error z value Pr(>|z|) 

Intercept 28.311 16.065 1.762 0.078 

Y –0.024 0.008 –2.985 0.003 

Monterey 2.393 0.476 5.029 <0.001 

San Luis Obispo 2.602 0.518 5.028 <0.001 

San Francisco 0.894 0.537 1.664 0.096 

Sonoma 2.101 0.504 4.169 <0.001 

Marin 2.752 0.476 5.778 <0.001 

Santa Cruz 1.821 0.627 2.906 0.004 

San Mateo 1.035 0.557 1.859 0.063 

Santa Barbara 1.300 0.627 2.074 0.038 

Mendocino 2.995 0.586 5.111 <0.001 

Del Norte 2.613 1.069 2.444 0.015 

Los Angeles –3.358 1.069 –3.140 0.002 

Humboldt 2.957 0.519 5.700 <0.001 

Orange –1.202 0.802 –1.499 0.134 

Ventura –13.741 430.517 –0.032 0.975 

S2 –32.121 18.107 –1.774 0.076 

S1 65.328 20.911 3.124 0.002 

Y:S1 –0.033 0.011 –3.153 0.002 

Y:S2 0.017 0.009 1.823 0.068 

 

 

 

 

WebTable 2. GLMM evaluating changes in attack rates considering all series of ocean activities 

 

    Estimate (standard error) 

(Intercept)                                                         −0.68 (1.38) 

 year                                                                   −0.04 (<0.001) 

AIC 395.62 

BIC 406.00 

Log Likelihood –194.81 

Num obs 235 

Num groups: activity 4 

Variance: activity.(Intercept) 7.28 

Variance: Residual 1.00 

Notes: BIC = Bayesian information criterion. 
 

 



WebTable 3. Year effect estimate of each victim-specific time series of shark attacks 

 
 

Estimate Standard error Pr(>|z|) Deviance explained Victims 

–0.112 0.030 <0.001 0.266 Scuba divers 

–0.013 0.014 0.363 0.017 Surfers 

–0.027 0.012 0.023 0.089 Beachgoers 

–0.068 0.017 <0.001 0.256 Abalone divers 



WebTable 4. Sources of surfing estimates found in the literature and on the internet 

 
 

People Year Reference(s) 

30 1929 Crawford (1999) 

80 1934 Crawford (1999) 

5000 1956 Strathern (2006) 

5000 1958 Warshaw (2011) 

100 000 1962 Strathern (2006); Dugan (2012) 

273 129 1990 The Associated Press (2002) 

660 061 1994 Cordell (2012) 

660 061 1995 Cordell (2012) 

728 344 1999 Cordell (2012) 

742 000 2000 Leeworthy and Wiley (2001) 

728 344 2000 Cordell (2012) 

546 258 2001 The Associated Press (2002) 

728 344 2001 Cordell (2012) 

826 215 2005 Leeworthy et al. (2005) 

1 069 755 2005 Cordell (2012) 

1 069 755 2006 Cordell (2012) 

654 144 2006 Anonymous (2014) 

662 337 2007 Anonymous (2012) 

1 069 755 2007 Cordell (2012) 

663 248 2007 Anonymous (2014) 

708 087 2008 Anonymous (2012) 

1 069 755 2008 Cordell (2012) 

754 291 2008 Anonymous (2014) 

730 392 2009 Anonymous (2012) 

1 069 755 2009 Cordell (2012) 

706 493 2009 Anonymous (2014) 

867 184 2010 Leeworthy et al. (2005) 

748 601 2010 Anonymous (2012) 

790 708 2010 Anonymous (2014) 

724 929 2011 Anonymous (2012) 

660 972 2011 Anonymous (2014) 

579 261 2012 Anonymous (2013) 

820 297 2012 Anonymous (2014) 

765 671 2013 Anonymous (2014) 



WebTable 5. Sources of diving population estimates 

 
 

People Year Reference 

64 860 1966 McAniff (1995) 

90 026 1970 McAniff (1995) 

220 524 1976 McAniff (1995) 

259 441 1978 McAniff (1995) 

276 953 1979 McAniff (1995) 

293 168 1980 McAniff (1995) 

308 734 1981 McAniff (1995) 

327 544 1982 McAniff (1995) 

350 245 1983 McAniff (1995) 

369 703 1984 McAniff (1995) 

356 731 1985 McAniff (1995) 

356 731 1986 McAniff (1995) 

311 329 1986 McAniff (1995) 

311 329 1987 McAniff (1995) 

327 544 1988 McAniff (1995) 

343 759 1989 McAniff (1995) 

359 974 1990 McAniff (1995) 

369 703 1991 McAniff (1995) 

337 273 1991 Hornsby (2011) 

385 918 1992 McAniff (1995) 

402 133 1993 McAniff (1995) 

308 475 1994 Hornsby (2011) 

331 824 1998 Hornsby (2011) 

415 105 1999 Hornsby (2011) 

371 000 2000 Leeworthy and Wiley (2001) 

404 727 2005 Leeworthy et al. (2005) 

383 972 2006 Hornsby (2011) 

385 269 2007 Anonymous (2014) 

417 180 2008 Hornsby (2011) 

417 699 2008 Anonymous (2014) 

352 839 2009 Anonymous (2014) 

433 266 2010 Leeworthy et al. (2005) 

408 619 2010 Anonymous (2014) 

334 678 2011 Anonymous (2014) 

385 269 2012 Anonymous (2014) 

411 213 2013 Anonymous (2014) 



WebTable 6. Sources of estimates of abalone diving days 

 
Diver days Year Method Reference 

13 615 1960 Interview survey Miller et al. (1974) 

39 863 1972 Interview survey Miller et al. (1974) 

117 632 1977 Aerial and creel survey data J Kashiwada unpublished data 

96 000 1983 Aerial and creel survey data J Kashiwada unpublished data 

161 760 1985 Random telephone surveys J Kashiwada unpublished data 

266 884 1986 Random telephone surveys J Kashiwada unpublished data 

254 618 1987 Random telephone surveys J Kashiwada unpublished data 

89 696 1988 Random telephone surveys J Kashiwada unpublished data 

88 320 1989 Random telephone surveys J Kashiwada unpublished data 

101 908 1998 Abalone permits J Kashiwada unpublished data 

114 702 1999 Abalone permits J Kashiwada unpublished data 

112 728 2000 Abalone permits J Kashiwada unpublished data 

117 263 2001 Abalone permits J Kashiwada unpublished data 

109 427 2002 Abalone permits J Kashiwada unpublished data 

94 978 2003 Abalone permits J Kashiwada unpublished data 

94 597 2004 Abalone permits J Kashiwada unpublished data 

90 615 2005 Abalone permits J Kashiwada unpublished data 

108 910 2006 Abalone permits J Kashiwada unpublished data 

119 078 2007 Abalone permits J Kashiwada unpublished data 

107 947 2008 Abalone permits J Kashiwada unpublished data 

128 623 2009 Abalone permits J Kashiwada unpublished data 

98 188 2010 Abalone permits J Kashiwada unpublished data 

89 497 2011 Abalone permits J Kashiwada unpublished data 

84 874 2012 Abalone permits J Kashiwada unpublished data 

 



 
WebFigure 1. Relationship between bathing events and beach attendance. Data refer to 75 beaches in the 

southern California counties Los Angeles, Orange, and San Diego, and are taken from Dwight et al. 

(2007).



 
 
WebFigure 2. Northern elephant seal rookeries (circles) in California. Color shading of polygons 

shows the human population density for coastal counties (people per square kilometer).



WebFigure 3. Seasonal pattern of beachgoing. Data taken from Dwight et al. (2007). 
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